Mining Deformation Data on Mines
Formatting Fun
On this occasion of writing about mining we’ve chosen not to use our typical short form with loads of pictures in between :) Instead, it’s a bit more like a paper. We decided to change it up for once and allow for an easier long form. Enjoy the read, and if it seems a repeat of former content . . . then you are awesome, you’ve been keeping up.
Mining is, by far, one of the most important application potentials for the InSAR community. Here all of us working in this effort have a chance at increasing the safety of sites that are often overlooked and tremendously hard-working. An ode to mines, their staff, and communities is due but alas there’s never enough time!
Tailings Dams, Spoils Piles: Monitoring Mines
Using European Space Agency (ESA) Sentinel 1 (S1) data as well as other resolution satellites from X to L band enables EO59 to assess deformation of nearly any site globally, at the millimeter scale, from a historic record since 2015. Thanks to a regular revisit frequency we are also able monitor a site twice monthly in an ongoing basis.
EO59 InSAR is based on persistent scatter points, which are areas that have a coherent signal over time. This allows us to be more accurate and resolute than in a differential InSAR process. As we are looking for persistent scatter over time, we are also able to display deformation in a time series – and update that series quickly. Depending on the location, the overflight takes place every 6 or 12 days.
In the event a sensitive structure area does not have a persistent scatter point, we can typically resolve this through adjusting the system, or the use of a low-cost artificial reflector – a trihedral metal object – which we can provide.
This data history can be used to forensically investigate prior failures as well as correlate deformation data to manual and other data collection methods.
At its root, InSAR functions by taking very many radar ‘images’ of a site, ‘stacking’ them atop one another and finding a phase shift through the history.
It was historically delivered as a narrative report generated by a complex system of physics methods. We have dramatically changed the way in which data from the spacecraft is delivered.
EO59 has automated collecting, processing, and displaying data from S1. This allows us to rapidly deliver monitoring results which are then displayed on our own web-GIS which is accessible, and easily used, on any smartphone from anywhere. They are coded for doppler shift relative to the satellite, where blue is vertical deformation (uplift) and red is downward (subsidence). This data is typically delivered as a vector as the line of sight of the space craft.
EO59 is partnered with many signature civil structural engineering firms globally to review our results. We also provide the option of blockchain enabled security of the data flow from the space craft to the data display for security sensitive applications.
Ultimately, it is EO59’s unique use of automation and (A)rtifical (I)ntelligence that enable us to deliver better, faster, and more economically viable InSAR data than anyone on the planet.
InSAR should be used to monitor the rate of change in deformation trends in these sites. It can serve as a valuable forewarning. As we’ve mentioned before, in an emergency, terrestrial SAR devices are best suited to continue or “link” real time deformation trends to that of satellite InSAR.
Vegetation and open fields are not consistently reflective - that means we cannot acquire an accurate signal from those areas automatically. We will work with an operator to best understand what is going on in a site they want to see where there is no auto detection of a signal. Often, there is in fact a signal but one that is getting filtered out if it is too erratic. Occasionally we will recommend trimming vegetation, or as mentioned above, using artificial reflectors.
A key example of this technique is in the Brumadinho failure as well as in the mine wall destabilization at Gongo Soco in Brazil. In all of these examples the data points you see were determined without us ever visiting the site, or using any sort of a reflector.
Brazil
We wanted to make a special shout out to Brazil in this section as we’ve a great deal of data on many sites there. It is a country with extensive natural resources, tremendous numbers of dams, and few resources to monitor all of them all of the time. It is the perfect site for EO59 and an area of unique focus for us. For the Portuguese speaking among you below is a unique video made with government of Sao Paulo when they visited us in Tallinn, Estonia!